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Abstract 

We generalize the classical max-min rate allocation 
policy with the support of the minimum rate require- 
ment and peak rate constraint for each connection. 
Since a centralized algorithm for the generalized max- 
min (GMM) rate allocation requires global information, 
which is difficult to maintain and manage in a large net- 
work, we develop a distributed protocol to achieve the 
GMM policy using the available bit rate (ABR) flow con- 
trol mechanism. We give a proof that our distributed 
protocol converges to the GMM rate allocation through 
distributed and asynchronous iterations under any net- 
work configuration and any set of link distances. 

1 Introduction 
The classical max-min policy has been suggested by 

the ATM Forum as a network bandwidth sharing policy 
for ABR service [l, 21. This works well when each ABR 
connection’s minimum cell rate (MCR) is zero and peak 
cell rate (PCR) is greater than or equal to the link rate. 
But in a general setting of MCR/PCR for a connection, 
the classical max-min policy no longer suffices to deter- 
mine a rate allocation since it does not support either 
MCR or PCR. 

In this paper, we generalize the classical max-min pol- 
icy with the support of a minimum rate requirement and 
a peak rate constraint for each connection. 

Since a centralized algorithm for the generalized max- 
min (GMM) policy requires global information, which 
is difficult to maintain and manage in a large network, 
we design a distributed protocol to  achieve the GMM 
policy using the ABR flow control mechanism. Our dis- 
tributed protocol is a generalization of Charny’s Coraszs- 
tent Markzng technique, which was originally designed to 
achieve the classical max-min policy [4]. We give a cor- 
rectness proof that our distributed protocol converges to 
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the GMM rate allocation through distributed and asyn- 
chronous iterations. Our convergence proof gives a the- 
oretical guarantee that the rate allocation by our dis- 
tributed protocol converges to our GMM policy under 
any network configuration and any set of link distances. 

The remainder of this paper is organized as follows. 
Section 2 presents the generalized max-min (GMM) pol- 
icy with the support of a minimum rate requirement and 
a peak rate constraint for each connection. In Section 3, 
we present a distributed protocol to achieve the GMM 
policy; and in Section 4 we give a proof of its conver- 
gence. Section 5 shows simulation results of our dis- 
tributed protocol. Section 6 concludes this paper and 
points out future research directions. 

2 The Generalized Max-Min Rate Allo- 
cation Policy 

In our model, a network hf is characterized by in- 
terconnecting switches with a set of links C. A session 
s E S traverses one or more links in C and is allocated 
a specific rate r,.l  The aggregate allocated rate Fe on 
link e E C of the network is 

Fe = c ps . 
s E S traversing link e 

Let Ce be the capacity of link e. A link e is saturated 
or fully utzlzzed if Fe = Ce. Let MCR, and PCR, be the 
minimum rate requirement and the peak rate constraint 
for each session s E S. We assume that the sum of all 
sessions’ MCR traversing any link does not exceed the 
link’s capacity. This assumption is enforced by admis- 
sion control at call setup time to determine whether or 
not to accept a new connection. 

We say that a rate vector T = { r S  I s E S} is ABR- 
feaszble if the following two constraints are satisfied: 1) 
MCR, 5 T,  5 PCR, for all s E S; and 2) Fe 5 Ce for 
all e E C. 

Before we give a definition for the GMM policy, we use 
the following simple example to illustrate its concept. 

Example 1 Peer-to-Peer Network 
In this network configuration (Fig l ) ,  the output port 

‘From now on, we shall use the terms “session”, “virtual con- 
nection”, and “connection” interchangeably throughout the paper. 



link of SW1 (Linkl2) is the only potential bottleneck 
link. Assume that all links are of unit capacity. The 
MCR requirements and PCR constraints for all connec- 
tions are listed in Table 1. 

s2 I 0.10 
s3 1 0.05 

n m 

0.25 0.25 
0.50 0.35 

Figure 1: The peer-to-peer network configuration. 

Session I MCR I PCR I GMM Rate Allocation 
sl I 0.40 I 1.00 I 0.40 

The iterative steps to achieve the GMM rate alloca- 
tion are listed below, with a graphical display shown in 
Fig 
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Step 1: As shown in Fig. 2, we start the rate of each 
session with its MCR (shown in the darkest shaded 
areas in Fig. 2). 

Step 2: Since the rate of s3 (0.05) is the smallest 
among all sessions, we increase it until it reaches 
the second smallest rate, which is 0.1 (s2). 

Step 3: The rates of both s2 and s3 being 0.1, we 
increase them together until s2 reaches its PCR con- 
straint of 0.25. 

Step 4: Remove s2 (with a rate of 0.25) from future 
iterations and we now have the rates of 0.40 and 
0.25 for sl and s3,  respectively, with a remaining 
capacity of 0.10 on Link 12. 

Step 5: Since s3 has a smaller rate (0.25) than sl 
(0.4), we increase the rate of s3 to 0.35 and Link 
12 saturates. The final rate allocation is 0.40, 0.25, 

0 and 0.35 for sl, s2, and s3,  respectively. 

The above example illustrates the fundamental con- 
cept of GMM policy, i.e. always maximize the minimum 
rate among all sessions (while satisfying each session’s 
minimum rate requirement and peak rate constraint), 
which is the same concept as the classical max-min pol- 
icy. 

The iterative steps used in Example 1 for G M M  rate 
allocation is characterized by the following algorithm, 
which can be applied to any network with an arbitrary 
number of connections. 

0 4  
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0 2  

0 1  

00 

s3 SI s2 

Figure 2: Graphical display of rate allocation for each 
session at each iteration under the GMM policy in the 
peer-to-peer network. 

Algorithm 1 
GMM Policy 

A Centralized Algorithm for the 

1. Start the rate of each session with its MCR. 

2. Sort all sessions in the order of increasing rate. 

3. Increase the rate of the session with the smallest 
rate among all sessions until one of the following 
events takes place: 

The rate of such a session reaches the second 
smallest rate among the sessions; 

0 Some link saturates; 
The session’s rate reaches its PCR. 

4. If some link saturates or the session’s rate reaches 
its PCR in Step 3, remove the sessions that either 
traverse the saturated link or reach their PCRs, re- 
spectively, as well as the network capacity associ- 
ated with such sessions from the network. 

5. If there is no session left, the algorithm terminates; 
otherwise, go back to Step 3 for the remaining ses- 
sions and network capacity. 0 

Formally, the GMM rate allocation policy is defined 
as follows. 

Definition 1 A rate vector r is Generalized Max-Min 
(GMM) if it is ABR-feasible, and for every s E S and 
every ABR-feasible rate vector r in which i., > rs, there 
exists some session t E S such that rJ 2 rt, and rt > rt. 
0 

We define a new notion of bottleneck link as follows. 

Definition 2 Given an ABR-feasible rate vector r ,  a 
link e E C is a GMM-bottleneck link with respect to r for 
a session s traversing e if Fe = Ce and rs 2 rt for every 

0 session t traversing link: e for which rt > MCRt. 
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Theorem 1 An ABR-feasible rate vector r is GMM 
if and only if each session has either a GMM-bottleneck 
link with respect to r or a rate assignment equal to its 
PCR. 0 

Theorem 2 
satisfies the GMM rate allocation. 

There exists a unique rate vector that 
0 

Due to the paper length constraint, we refer interested 
readers to [7] for the proofs of Theorems 1 and 2 ,  as well 
as a correctness proof of Algorithm 1. 

In Example 1 ,  Link 12 is a GMM-bottleneck link for 
both sl and s3 (see Definition 2). On the other hand, sl 
and s3 have different rate allocation (0.4 for sl  and 0.35 
for s3) .  Thus, it is essential to have a precise definition 
of GMM-bottleneck lank rate here. 

Let l+{event A} be the indicator function with the 
following definition: 

1 
0 otherwise. 

if event A is true; 
l+{event A} = 

Definition 3 Given a GMM rate vector r ,  suppose 
that link e E C is a GMM-bottleneck link with respect 
to r and let re denote the GMM-bottleneck link rate at 
link e. Then re satisfies 

= c k  - rf 
iEYt 

where l4e denotes the set of sessions that are GMM- 
bottlenecked at link e,  and yk denotes the set of ses- 
sions that are either GMM-bottlenecked elsewhere or 
have a rate allocation equal to their PCRs and ri < re 
for i E yk. 0 

With the above definition, it is easy to show that in 
Example 1 the GMM-bottleneck link rate at Link 12 is 
0.35. 

Note that in the special case when MCRs = 0 for 
every s E SI the GMM-bottleneck link rate re in Def- 
inition 3 becomes: re . lUel = Ce - CiEye r i ,  or re = 

ce-c"ye '' , where IUe I denotes the number of sessions 
bottlenecked at link &. This is exactly the expression for 
the max-min bottleneck link rate at link e. 

It should be clear that by Definition 3 and Algo- 
rithm l ,  the GMM rate allocation for a session s E S 
can only be one of the following: 1)  A rate equal to its 
MCR; or 2 )  A rate equal to its PCR; or 3) A rate equal 
to its GMM-bottleneck link rate. 

The centralized algorithm for the GMM policy re- 
quires global information, which is difficult to maintain 

w e  I 

~ 
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and manage in a large network. In the following sec- 
tions, we design a distributed protocol to achieve the 
GMM policy and prove its convergence. 

3 A Distributed Protocol 
There have been extensive prior efforts on the design 

of distributed algorithms to achieve the classical max- 
min rate allocation. Early algorithms by Hayden [6], 
Jaffe [8], and Gafni [5] required synchronization of all 
nodes for each iteration. Mosely's work in [ll] was the 
first asynchronous algorithm. Unfortunately, this algo- 
rithm could not offer satisfactory convergence perfor- 
mance. Later, Ramakrishnan et ul. proposed to use 
a single bit to indicate congestion and achieve max- 
min [la]. Due to the binary nature of this algorithm] 
the source's rate exhibited oscillations. Recent inter- 
est in ABR service have led to many contributions to 
the design of distributed algorithm to achieve max-min 
[4, 9, 10, 13, 14, 151. In particular, the algorithm by 
Charny et al. in [4] was one of the few algorithms that 
were proven to converge to max-min through distributed 
and asynchronous iterations. In this paper, we will make 
a generalization of Charny's Consastent Murkang tech- 
nique to design a distributed algorithm for our GMM 
rate allocation. 

3.1 Distributed Control Mechanism 

It should be clear that a distribute protocol achiev- 
ing GMM rate allocation must have the cooperation be- 
tween the sources and the network. In particular, such 
cooperation includes the following components: 1) Infor- 
mation exchange between a source and the network; and 
2) Source rate adaptation upon receiving feedback from 
the network. 

Forward ATM Forward RM Cell 

I 

. . 
BaEkward Rhf Cell 

Figure 3: ABR flow control mechanism for a connection. 

ABR flow control mechanism offers such a facility to 
achieve cooperation between a source and the network. 
As shown in Fig. 3, to achieve information exchange, Re- 
source Management (RM) cells are inserted among data 
cells to exchange information between a source and the 
network. The source sets the fields in the forward RM 
cells to inform the network about the source's rate infor- 
mation (e.g. MCR, PCR, CCR). The network (switches) 



set the fields in the backward RM cells (e.g. ER) to in- 
form the source about available bandwidth. For source 
rate adaptation, the source adjusts its transmission rate 
upon receiving backward RM cells. 

3.2 Charny’s Work 
Our distributed protocol for the GMM policy is mo- 

tivated by the Consistent Marking technique by Charny 
et al. for the classical max-min policy [4]. In that algo- 
rithm, each switch monitors its traffic by keeping track 
of the state information of each traversing connection. 
Also, each output port of a switch maintains a variable 
called the advertised rate to calculate available band- 
width for each connection. When an RM cell arrives at  
the switch, the CCR value of the connection is stored in 
a VC table. If this CCR value is less than or equal to 
the current advertised rate, then the associated connec- 
tion is assumed to be bottlenecked either at  this link or 
elsewhere and a corresponding bit for this connection is 
marked at  the VC table. Then the following equation is 
used to update the advertised rate: 

Cj - Rates of marked connections 
Advertised Rate = 

ne - Marked connections 
(1) 

where Ce and ne are the link capacity and the number 
of connections at link C. Then the VC table is examined 
again. For each marked session, if its recorded CCR is 
larger than this newly calculated advertised rate, this 
session is then unmarked and the advertised rate is cal- 
culated again. The ER field of an RM cell is then set to 
the minimum of all advertised rates along its traversing 
links. Upon convergence, each session is allocated with a 
max-min rate and is marked along every link it traverses. 

To extend Charny’s algorithm for GMM, it is obvious 
the advertised rate calculation in (1) has to be modi- 
fied to reflect the GMM-bottleneck link rate defined in 
Definition 3. However, with the newly defined GMM- 
bottleneck link rate, it is not clear how the marking 
should be done for each traversing session. For instance, 
in Example 1, if we mark a session when its CCR is less 
than or equal to the advertised rate as in Charny’s tech- 
nique, this will bring the advertised rate into a state of 
oscillation that will never converge! 

A deeper look at  Charny’s original algorithm for max- 
min shows that a session traversing its own max-mzn bot- 
tleneck lank does not need to  be marked at this link. That 
is, at a saturated link, only sessions bottlenecked else- 
where need to be marked. In fact, this observation leads 
us to a fundamental generalization of Charny ’s Consis- 
tent Marking technique as well as its convergence proof, 
which we will elaborate in the following sections. 

3.3 A Distributed Protocol for GMM 

tocol, which conforms to the ABR framework in [l]. 
We first specify the end system behavior of our pro- 

Algorithm 2 End System Behavior 
Source Behavior 

The source starts to transmit at  ACR := ICR, which 
is greater than or equal to its MCR; 

For every N,., transmitted ATM data cells, the 
source sends a forward RM(CCR, MCR, ER) cell 
with: CCR := ACR.; MCR := MCR; ER := PCR; 

Upon the receipt a backward RM(CCR, MCR, ER) 
cell from the destination, the ACR at source is ad- 
justed to: ACR := ER. 

Destination Behavior 

0 The destination returns every RM cell back towards 
0 the source upon receiving it. 

The switch maintains a table at  each output port to 
keep track of the state informationof each traversing VC 
(so-called per-VC accounting) and performs the switch 
algorithm (Algorithm 4) at this output port. 

The following are the link parameters and variables 
used in our switch algorithm. 

Ce: Capacity of link e,  C E C. 
RCe: Remaining Capacity variable at  link C used for pe 

Ge: Set of sessions traversing link e,  C E L. 
ne: Number of sessions in G j ,  C E L, i.e., nj = [Gel. 
r;: CCR value of session i E Ge at link C .  
MCR’: MCR requirement of session i. 
b;: Bit used to mark session i 6 Qe at link C. 

calculation in Algorithm 3. 

1 if session i E is marked at link C; 
0 otherwise. { b; = 

Ye: Set of sessions marked at  link C, i.e. 
Ye = { i l i  E Ge and 62, = 1). 

Ue: Set of sessions unmarked at  link e,  i.e. 
Ut = {i I i E Ge and b; = 0}, and ye UUe = Ge. 

f i e :  Advertised rate at link e ,  calculated as follows. 

Algorithm 3 pi Callculation 

else { 

RCe : = C e - r .  ’ JZEYt 6;. 
if (RCe < CiE,ut MCR*) then p i  := 0; 
else /* i.e. RC‘e 2 MCRi. */ { 

Sort unmarked sessions s E Ut in increasing 
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order of their MCRs, i.e. 
MCR[1] 5 MCR[2] 5 . . . 5 MCR[IUeI]; 
IC := pel; pe := E a .  k l  

while (,ut < MCR[IC]) { 
RCe := RCe - MCR[IC]; 
IC := IC - 1; 

Each link 4 E C is initialized with: Ge = 0; ne = 0; 
Pi! = ce. 
Algorithm 4 Switch Behavior 

Upon the receipt of a forward RM(CCR, MCR, ER) cell 
from the source of session i { 

if RM cell signals session exit3{ 
(j’e := (j‘e - {i}; 
table-update() ; 

ne := ne - 1; 

1 
if RM cell signals session initiation { 

Ge := Ge u {i}; 
bi := 0; ri := CCR; MCR’ := MCR; 
table-update(); 

ni! := ne + 1; 

1 
else /* i.e. RM cell belongs to an onging session. */ { 

vi := CCR; 
table-update(); 

if (vi < p i )  then bi := 1; 

1 
Forward RM(CCR, MCR, ER) towards its 
destination; 

I 

Upon the receipt of a backward RM(CCR, MCR, ER) 
cell from the destination of session i { 

ER := max{min{ER, pe},  MCR}; 
Forward RM(CCR, MCR, ER) towards its source; 

E 
table-update() 

rate-calculation-1: use Algorithm 3 to calculate 
advertised rate p i ;  
Unmark any marked session i E Gi! at link e with 

rate-calculation-2: use Algorithm 3 to calculate 

{ 

ri 2 P;;  

’The combined steps in the bracket for ‘‘else’’ are equivalent 
to find the GMM-bottleneck link rate pe for the set of unmarked 
sessionsUl such that p e * ~ , , u t  l+{MCR* 5 p e } + C t E u t  MCR’. 
1+{MCR’ > p i }  =R$Ce. In the special case when MCRI = 0 for 
every z E U t ,  pe = 2, i.e. the max-min share rate. 

3This information is conveyed through some unspecified bits in 
the RM cell, which can be set either at the source or the UNI. 

IL/c I 

advertised rate pe; 
if (Pe < then { 

Unmark any marked session i E Gl at link 
with ri 2 pe; 
rate-calculation3: use Algorithm 3 to calculate 
advertised rate ,ut again; 

0 
l4 

} 

By the operations of Algorithms 2 and 4, we have the 
following fact for the ACR at the source and the CCR 
field in the RM cell. 

Fact 1 For every connection s E S, the ACR at the 
source and the CCR field in the RM cell are ABR- 
feasible, i.e. MCRs 5 ACRs 5 PCRs and MCR’ 5 
CCRs 5 PCR‘. 0 

Remark 1 Unlike Charny’s technique where a ses- 
sion is marked if its rate is less than or equal to the 
advertised rate, we mark a session only when its rate 
is strictly less than the advertised rate. A small mod- 
ification as it may seem to be, this new marking crite- 
rion brings a whole new marking property for sessions 
upon convergence. In particular, a session traversing its 
own GMM-bottleneck link will not be marked at such 
a link upon convergence. In fact, this is the key to re- 
solve the difficulty of marking sessions that are GMM- 
bottlenecked at  the same link but with different rates 
(e.g. 0.4 for sl and 0.35 for s3 in Example 1). In con- 
junction with the GMM-bottleneck link rate definition 
and advertised rate calculation, this new marking tech- 
nique leads to a fundamental generalization of Charny’s 
Consistent Marking technique, as we will show in detail 
in the following section on the proof of convergence. 0 

4 Proof of Convergence 
The proof of convergence of our distributed protocol 

is based on a sequence of lemmas. We first give the 
following definition for marking-consistent, which is a 
generalization of Charny’s definition in [4]. 

Definition 4 Let Yt be the set of sessions that are 
marked at link C E C and pe be calculated according to 
Algorithm 3. The marking of sessions at  link e E C is 
marking-consistent if ri < pe for every session i E ye. 0 

The following is a key lemma in our convergence proof. 

4Both pi  and p i  follow the same p l  calculation in Algorithm 3. 
In most cases, pi  calculated by ratexalculation2 is greater than 
or equal to p i  and rate-calculation3 is not used. See the proof 
of Lemma 1 for a unique case where p l  by ratexalculation2 
may be less than pi  and another round of unmarking and 
rateralculation3 is necessary. 
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Lemma 1 After the switch algorithm is performed 
for each RM cell traversing a link, the marking of sessions 

0 at this link is marking-consistent. 

Proof of Lemma 1: Let Ye and Ue be the set of 
marked and unmarked sessions at  link l just before 
rate-calculation-1 is performed, respectively; pi  be the 
result for the advertised rate by rate-calculation-1 in 
function tableapdate(); 2, C ye be the set of sessions 
with r: 2 p i ,  i E 2 1  and therefore, are unmarked by the 
unmarking operation after rate-calculation-1 in function 
table-update(); pi be the result for advertised rate by 
rate-calculation2 in function table-update() . 

Case 1: If not all sessions in Ge are marked before 
rate-calculation-1, i.e. ye # Be, then we have the 
following two scenarios. 
Subcase A:  During rate-calculation-1, if Ce - 
Cisye ri e < CiE+ MCRi, then pi = 0. Thus, every 
session z E Ye will be unmarked by the unmarking 
operation and pi calculated by rate-calculation2 
satisfies 

and Ce 2 xiEGe MCRi (by call admission control). 
Therefore, pe 2 pi  = 0 and marking-consistent 
property trivially holds. 
Subcase B: During rate-calculation-1 for p j ,  if 

i€Yc i€Uc 

then p i  satisfies 

. ~ + { M c R ~  2 
iEUt 

+ M C R ~ .  I+{MCR' > p i }  

(3) 

After unmarking 2, 
function table-update(), we have 

Ye with rh 2 p i ,  i E Ze, in 

Ce - rj = 
iE (Ye - 2,) 

1 
i€Ue i E Z t  

The inequality holds by (2) and by Fact 1, 
CsEZc r: 2 M C R ~ .  In rate-calculation2 for 
pe, we have 

pe . ~ + { M c R ~  < p e l  
i€  (Ur u Z e )  

+ M C R ~ .  ~ + { M c R ~  > p i )  
* E  (Ut u Ze ) 

= Ce - rf. 
i E  (Ye - 2 1 )  

(4) 

+ M C R ~ .  ~ + { M c R ~  > p i }  
i EUe 

+ rf 
iEZe 

(5) 

Since r: 2 pi and r: 2 MCR' for i E Ze, to have 
(4) equal to ( 5 ) ,  we must have pe 2 p i .  That is, 
pe calculated by rate-calculation2 is greater than 
or equal to pi by rate-calculation-1. Since r; < 
pi  for i E (Ye - &), and pi 2 p i ,  the marking 
of these sessions continues to be marking-consistent 
after rate-calculation2 is performed. 

0 Case 2: If all sessions in Ge are marked before 
rate-calculation-1, i.e. Ye = Be, we have two scenar- 
ios. Let the RM cell for which the switch algorithm 
is performed belong to session s E S. 
Subcase A: If session s was not marked before the 
RM cell's arrival at  link l and is marked because of 
this RM cell's arrival with re" = CCR < p i ,  where 
pe was calculated by the switch algorithm for the 
previous traversing RM cell and satisfies 

After marking b; = 1, we have 

Ce - C rf > 0. 
i € G e  

During rate-calculation-1 for p: : 

With (6), we have 

pi  > maxrf 2 r; for every session p E Gi.  
% € B e  
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So all sessions in Ge will remain marked after the 
unmarking operation. Therefore, pe calculated by 
rate-calculation2 will be the same as pi and the 
marking of all sessions is marking-consistent. 
Subcase B: If session s was already marked before 
this RM cell arriving at  link e, the arrival of this 
RM cell will not change the advertised rate pe if 
the CCR in this RM cell is the same as re" in the 
current VC table at  the switch. On the other hand, 
if the new CCR is different from the recorded CCR 
for this session in the VC table, re" will be updated 
with this new CCR value. During rate-calculation-1 
for p i ,  we have 

Again, let 2 e  2 Ye denote the set of sessions with 
ri 2 p i ,  i E 2 e  and therefore, are unmarked by 
the unmarking operation after rate-calculation-1 in 
function table-update() . 
If 2 e  = 0, i.e. no session is unmarked, then pe 
calculated by rate-calculation2 will be the same as 
pi  and all sessions will remain marking-consistent . 
If 2 e  # P), then the set of sessions in 2 e  will be 
unmarked since 

This is the only situation where pe calculated by 
rate-calculation2 may be less than p j .  If pe < p i ,  
then we will perform another around of unmarking 
and pe calculation (rate-calculation3). It should be 
clear that the combined steps of rate-calculation-2, 
unmarking, and rate-calculation3 here are equiv- 
alent to Case 1. Thus, pl calculated by 
rate-calculation3 is greater than or equal to pe cal- 
culated by rate-calculation2 and the marking of 
sessions is marking-consistent. 

Lemma 2 Let ae be defined as 

i € B t  iEBt  

for every 
t 2 t o ,  

for every C E L .  

E C. There exists some time t o  such that for 

pe 2 ae 
E! 

0 Case 1: If some sessions in Ge are not marked, i.e. 
Ye # Gel then 

p l  ~ + { M c R ~  I p e l  
i €Ut 

Therefore, 

+ M C R ~  . ~ + { M c R ~  > p e }  

i E G t  

+ M C R ~ .  ~ + { M c R ~  > ae} 
i E B f  

Since r; < pe for i E ye, we must have pi 2 
equality holds only when yl = 0). 

0 Case 2: If all sessions in Ge are marked, i.e. YL = Gel 
there are two possible scenarios. 
Subcase A :  Suppose maxiep, r; 2 at. Since pe > 
maGEBf r;, we have pe 2 at. 
Subcase B: If maxjEpt rh < at,  then for every session 
i E Gel ri < at. Let session p E S be the session 
such that T$ = mahEGt rt .  Then 

(the 

+ M C R ~ .  ~ + { M c R ~  > ae)) - ri 
iEBt  

2 ae 

The last inequality holds because 

Let A4 be the total number of iterations needed to ex- 
ecute Algorithm 1. We have A4 5 (2lSl- l) ,  where IS1 is 
the total number of sessions in the network 171. During 
each iteration of Algorithm 1, there are three types of 
events: i) The rate of the session with the smallest rate 
reaches the rate of the session with the second small- 
est rate; ii) Some link saturates; and iii) Some session 

Proof of Lemma 2: Let time t o  be the time immedi- 
ately after the switch algorithm is performed for an RM 
cell at link I and and Ut denote the set of marked and 
unmarked sessions at  link e, respectively. By Lemma I ,  
the marking of sessions at link I is marking-consistent. 
That is, every marked session i at link [ satisfies rj < pi. 
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reaches its PCR. In the worst case, a type i event can take 
at  most (IS1 - 1) iterations, in which case each session 
has a different MCR and ([SI- 1) iterations will bring the 
rates of all sessions to the same rate of ma%€s MCRP. 
Note that there is no session removal during a type i 
event and the rate allocation for each session is tempo- 
rary. On the other hand, type ii and iii iterations give a 
permanent rate assignment to some session and such a 
session is removed from future iterations. In the follow- 
ing, we will focus only on type ii and iii iterations and 
index such iterations as 1,. . . , N ,  where N denotes the 
total number of type ii and type iii iterations in execut- 
ing Algorithm 1. We have shown in [7] that N 5 1.31. 

Let Si be the set of sessions being removed at  the 
end of the ith iteration, where i is the newly indexed 
iteration when we consider only type ii and iii iterations 
of Algorithm 1, 1 5 i 5 N .  Sessions in Si have reached 
their GMM rates. Let Li, 1 5 i 5 N be the set of links 
traversed by sessions in Si. Note that SI, S2, . . . , SN 
are mutually exclusive and the sum of SI, S2, . . . , SN 
is S, while L1, C2, . . . , CN may be mutually inclusive. 
That is, there may be links belonging to both Ci and 

This happens when some session in Si reaches its 
PCR before saturating link e E Ci at the ith iteration 
and link e E Ci becomes part of Li+l at the ( i  + 1)th 
iteration. 

Let ri, 1 5 i 5 N be defined as follows: 

t i  = maxrl  such that re" > MCR", 15 i 5 N .  

That is, rj is either the PCR or the GMM-bottleneck 
link rate of some session s E Si. By the operation of 
Algorithm 1, we have TI < r2 < . . . < TN. 

The following lemma states the inequality between 
the advertised rate pi and TI on every link e E L in the 
network. 

SES. 

Lemma 3 
i) If r1 = 5 PCR" for s E SI, i.e., the GMM- 
bottleneck link rate is reached before some session s E S1 
reaches its PCR, then for any t > t o ,  

Let t o  and at be defined as in Lemma 2. 

pi 2 7-1 for every e E C1; 
pt > rl for every e E (C - Cl). 

ii) If 71 = PCR" < for s E SI, i.e., some session s E Si 
reaches its PCR before the GMM-bottleneck link rate is 
reached, then for any t > t o ,  

pe > rl for every e E C. 

0 

For a proof of Lemma 3, see [7]. 
The following lemma gives a base case for induction. 

Lemma 4 
i) If r1 = 5 PClt' for s E SI, Le., the GMM- 
bottleneck link rate is reached before some session s E S1 
reaches its PCR, then for t 2 Tl, the following state- 
ments hold. 

There exists a TI 2 0 such that: 

1. p i  = 1-1 for every link e E E l .  

2. The ER field of every returning RM cell of session 
i E S1 satisfies ER = max(r1, MCR}. 

3. The ACR at sourcle for every session i E S1 satisfies 
ACR = max{ r1, MCR}. 

4. ri = max(r1, MCR} for every session i E SI and 
every link traversed by session i E SI; 
bi = 1 for every session with r: = TI, i E S1 and ev- 
ery traversing link e, ezcept at its GMM-bottleneck 
link e E C1. 

5. The ER field of every returning RM cell of session 
j E (S - SI) satisfies ER > TI .  

6 .  The ACR at source for every session j E (S - SI) 
satisfies ACR > TI .  

7. The recorded CCR of session j E (S - SI) satisfies 
r$ > TI at  every link e traversed by session j. 

ii) If r1 = PCR' < for s E SI, Le., some session s E S1 
reaches its PCR before the GMM-bottleneck link rate is 
reached, then for t 2 T I ,  the following statements hold. 

1. pi > 
2. The ER field of every returning RM cell of session 

for every liink e E L1. 

i E S1 satisfies ER = PCR" 

3. The ACR at source for every session i E Si satisfies 
ACR = PCR'. 

4. bi = 1, ri = PCRa for every session i E S1 and every 
link e traversed by session i E SI. 

5. - 7. Same as statements i)-5 to i)-7, respectively. 
0 

For a proof of Lemma 4, see [7]. Note that Lemma 4 
states that not only sewion p E S1 has reached its GMM 
rate of max(r1, MCRP} (in case i) or PCRp (in case ii), 
but that its rate will neuw change and such a session is 
marked with the following property: 

If 6 = MCRP (casle i), then session p is not marked 
at its GMM-bottleneck link but may be marked at  
other links it traverses; 

If 6 = r1 (case i) ,  then session p is marked at  all of 
its traversing links except its GMM-bottleneck link; 
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0 If r$' = PCRp (case ii), then session p is marked at 
every link it traverses. 

8 

sl I 0.05 
s2 I 0.10 

The result of Lemma 4 is used as the base case for 
induction on the index i of Si. It can be shown that if 
for some 1 5 i 5 N - 1, there exists a 2 0 such that 
statements as the ones in Lemma 4 hold, then there ex- 
ists a Ti+1 > 0 such that for t > Ti+1, all statements also 
hold for i + 1 [7]. This induction leads to the following 
main result. 

0.50 0.35 
0.25 0.25 

Theorem 3 After the number of active sessions in 
the network stabilizes, the rate allocation for each session 
by our distributed protocol converges to the GMM rate 
allocation. 17 

s3 
s4 

It has also been shown in [7] that an upper bound for 
the convergence time to  the final GMM rate allocation by 
our distributed protocol from the time when the number 
of active sessions in the network stabilizes is given by 
2.51SID, where IS1 is the total number of sessions in the 
network and D is an upper bound for the round-trip 
delay among all sessions. 

0.15 1.00 0.65 
0.05 0.15 0.15 

5 Simulation Results 

End System 

Our work in Section 4 gives a correctness proof that 
our distributed protocol in Section 3.3 converges to the 
GMM rate allocation through distributed and asyn- 
chronous iterations. This gives us a theoretical guaran- 
tee that our distributed protocol converges to the GMM 
policy under a n y  network configuration and a n y  set of 
link distances. In this section, we perform simulations to 
demonstrate the convergence property of our distributed 
protocol. Due to  the paper length constraint, we will 
only show simulations on the generic fairness network 
configuration (Fig. 4). We refer interested readers to [7] 
for simulations on many other network configurations. 

As shown in Fig. 4, the specific generic fairness 
network configuration that we use consists of 5 ATM 
switches connected in a chain with 6 session paths 
traversing these switches and sharing link capacity [3]. 

n L i  r l i  rli r l i '  

PCR I PCR 
MCR I MCR 1 

Figure 4: The generic fairness network configuration. 

Link 
Switch 

The ATM switches in all the simulations are assumed 
to have output port buffers with a speedup equal to the 
number of their ports. Each output port of a switch em- 
ploys the simple FIFO queuing discipline and is shared 
by all VCs going through that port. 

t 

Speed I 150 Mbps 
Cell Switching Delav I 4 us 

I Session 1 MCR I PCR I GMM Rate Allocation 1 

s5 I 0.35 I 1.00 I 0.75 
s6 1 0.40 I 0.60 1 0.40 

Table 2: MCR requirement, PCR constraint, and GMM 
rate allocation of each session for the generic fairness 
network configuration. 

I ICR I MCR 
Nrm I 32 1 

Table 2 
and GMM 

Table 3 

Table 3: Simulation parameters. 

lists the MCR requirement, PCR constraint 
rate allocation for each session. 

lists the parameters used in our simulation. 
The link speed is 150 Mbps. For stability] we set the 
target link utilization to be 0.95. That is, we set Cl = 
0.95 x 150 Mbps = 142.5 Mbps at every link 4! E L for the 
ER ca lc~la t ion .~  The distance from source/destination 
to the switch is 1 km and the link distance between ATM 
switches is 1000 km (corresponding to a wide area net- 
work) and we assume that the propagation delay is 5 p s  
per km. 

c 60 
a, 

- 
8 40 

30 

20 

10 

0 
0 20 40 60 80 1 0 0  120 140 160 180 200 

Time (ms) 

Figure 5: The cell rates of all connections for the generic 
fairness network configuration. 

Fig. 5 shows the ACR at source for each session under 
our distributed protocol. The cell rates shown in the plot 

5This will ensure that the potential buffer build up during tran- 
sient period will be eventually emptied upan convergence. 
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are normalized with respect to the targeted link capacity 
Ce (142.5 Mbps) for easy comparison with those values 
obtained with our centralized algorithm for GMM policy 
under unit link capacity (Table 2) .  Each session starts 
to transmit at its MCR. After initial iterations, we see 
that the cell rate of each session converges to the GMM 
rate allocation listed in Table 2. Here, the maximum 
round trip time (RTT) among all sessions is 30 ms (sl 
and s2) and its takes less than 2 RTT (60 ms) for our 
algorithm to converge. 

6 Concluding Remarks 
The contributions of this work are three-fold. First, 

we generalized the classical max-min policy to include 
a minimum rate requirement and a peak rate constraint 
for each connection by extending the key concept of max- 
min, i.e., madmize the minimum rate among all connec- 
tions. Secondly, we designed a distributed protocol with 
the aim of achieving the GMM rate allocation by making 
a generalization of Charny’s Consistent Marking tech- 
nique. Thirdly, and most importantly, we gave a proof 
that our distributed protocol converges to the GMM rate 
allocation through distributed and asynchronous itera- 
tions. Our proof provides a theoretical guarantee that 
our distributed protocol converges to the GMM rate al- 
location under any network configuration and any set of 
link distances. 

Our future work will focus on other issues in our dis- 
tributed protocol. One challenging problem is to reduce 
the storage and computational complexity of our switch 
algorithm and yet be able to have a rigorous proof of the 
algorithm’s convergence. Other issues include system 
transient behavior, buffer requirements, and the. rate of 
convergence, which all need to be carefully investigated 
before we deploy a distributed protocol. 
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